
1

AIoT Smart Home via Autonomous LLM Agents
Dmitriy Rivkin, Francois Hogan, Amal Feriani, Abhisek Konar, Adam Sigal, Xue Liu, Gregory Dudek

Abstract—The common-sense reasoning abilities and vast gen-
eral knowledge of Large Language Models (LLMs) make them
a natural fit for interpreting user requests in a Smart Home
assistant context. LLMs, however, lack specific knowledge about
the user and their home, which limits their potential impact.
SAGE (Smart Home Agent with Grounded Execution), overcomes
these and other limitations by using a scheme in which a user
request triggers an LLM-controlled sequence of discrete actions.
These actions can be used to retrieve information, interact with
the user, or manipulate device states. SAGE controls this process
through a dynamically constructed tree of LLM prompts, which
help it decide which action to take next, whether an action
was successful, and when to terminate the process. The SAGE
action set augments an LLM’s capabilities to support some of
the most critical requirements for a Smart Home assistant. These
include: flexible and scalable user preference management (“Is
my team playing tonight?”), access to any smart device’s full
functionality without device-specific code via API reading (“Turn
down the screen brightness on my dryer”), persistent device state
monitoring (“Remind me to throw out the milk when I open the
fridge”), natural device references using only a photo of the room
(“Turn on the lamp on the dresser”), and more. We introduce a
benchmark of 50 new and challenging smart home tasks where
SAGE achieves a 76% success rate, significantly outperforming
existing LLM-enabled baselines (30% success rate).

Index Terms—Autonomous LLM Agents, Smart Home, IoT,
Generative AI, Embodied AI, Personalized AI, AI Assistant.

I. INTRODUCTION

Smart home assistants have become increasingly flexible
and capable in recent years [31], [32]. However, despite
significant advancements, there remains a chasm between the
capabilities of smart home assistants and those of human users
[33]–[35]. The limitations of existing smart home assistants
can be broken down into three categories: (1) difficulty inter-
preting unconstrained natural language of user commands, (2)
limitations in interaction with its environment (i.e. devices)
and external data sources, and (3) lack of knowledge of the
user’s habits and preferences. Overcoming these shortcomings
would represent a significant step forward for smart home
assistants, bringing them closer to matching the capabilities of
a human assistant. To address these issues, we present SAGE
(Smart Home Agent with Grounded Execution).

When making a request to a friend, they may use language
which is imprecise, but of which the meaning is inherently
understood by both parties. This is possible because humans
in this situation have knowledge of the other person, the
environment, and the world in general, allowing them to infer
intent based on context. For example, it is trivial to ask a
friend to “Turn on the TV over the dresser”, but doing so
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Fig. 1. Demonstration of SAGE response process to user command: “Put
the game on by the dresser”. The figure illustrates the sequence of tools used
by SAGE to complete the task. Note that each control flow decision was made
by an LLM, not by hand-coded logic. The control flow is described step by
step in Section V. This demo was executed using real SmartThings-enabled
devices.

with a smart home assistant necessitates some manual set-
up. Existing smart home systems (e.g. Bixby, Alexa, Google
Assistant, etc.) need users to define device names for the as-
sistant to be able to interpret commands relating to their smart
devices. Understanding of unconstrained natural language in
the context of smart home assistants has seen great progress
with the rise of large language models (LLMs), such as GPT4.
LLMs are powerful language models which are trained on
vast amounts of text scraped from across the internet [36].
As such, they have exceptional performance on diverse text
generation tasks from writing code to poetry, without the need
for finetuning [37]. In light of this, recent approaches such
as [2] leverage LLMs in a fixed decision-making pipeline to
interpret human commands, and output changes to be made to
the smart home in a structured text format.

LLMs even enable the interpretation of open-ended, sub-
jective requests which require creative reasoning (e.g. “Set up
the lights for Halloween”). Without prior manual setup by the
user, existing smart home systems are unable to carry out such
a request in any meaningful way. Conversely, an LLM-enabled
smart home assistant could respond by putting on spooky
music and setting the lights to a dim orange, approaching how
a human might respond in the same context.

However, interpreting and carrying out user commands is
not a one-size-fits-all task; using a fixed process for all user
commands is inflexible. Consider the steps needed to carry out
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commands such as “Tell me the current time”, as compared
with “Put the game on by the dresser”. The first command is
a simple and unambiguous request, while the second requires
the ability to understand imprecise language and the intricate
control of the user’s smart devices. This issue motivates our
use of an “autonomous LLM agent” [1] strategy because it
allows for a higher degree of LLM autonomy than previous,
more rigid frameworks, such as [2] and [3] (see Section II).

In the autonomous agent setting, the agent generates a plan
for addressing the task through chain-of-thought reasoning [4],
and chooses which tools to use at each step of the process.
These tools have both inputs (arguments) and outputs. At each
step of the command execution process, the LLM is prompted
to decide which tool and arguments to use. Internally, a tool
may query a database, control a device, interact with the user,
or even spawn a separate, specialized autonomous LLM agent
to carry out specific types of tasks. When the tool finishes
execution, the outputs of the tool are used to construct the
subsequent prompt. In this framework, LLM augmentation is
achieved through the construction of tool selection prompts,
tool interfaces, tool implementations, and tool output formats.
With these augmentations, SAGE is able to overcome inherent
shortcomings of LLMs such as the lack of specific knowledge
about the user, their home, and their devices. The overall
approach is described in more detail in Section III. The
most important tools are briefly introduced in the following
paragraphs, and described in detail in Section IV.

To address the aforementioned issue of ambiguous user
command phrasing, we present the device disambiguation tool,
which is used to interpret implicit user intent in such situations,
with minimal manual set-up. For example, this allows SAGE
to understand which device the user means when saying “Turn
on the TV over the dresser”, without defining a device name.

Existing smart home solutions require manually written
code to define the interaction between the assistant and de-
vices. Due to the wide range of devices available on the
market, it becomes infeasible for the developers of the assistant
to tightly integrate the full spectrum of functionality provided
by each one. We equip SAGE with the device interaction tool,
which leverages the ability of LLMs to generate structured text
to make API calls for fine-grained control of diverse smart
devices.

In existing smart home systems, users can use simple
conditional logic to create persistent commands (also known as
automations or routines) for their devices, such as those used
in IFTTT1 (If This Then That). These allow a certain set of
actions to be performed in response to a condition being met.
Existing smart home systems’ restricted complexity of device
interaction leads to similarly restricted options for persistent
commands and their trigger conditions, especially when doing
so by interacting with the voice assistant. In SAGE, this is
not only alleviated by the device interaction tool’s ability to
exploit device APIs more fully, but also by a set of tools
for persistent command handling via code-writing. This set of
tools leverages the ability of LLMs to generate code, allowing
for the creation of complex triggers, which in turn enable more

1https://ifttt.com/

elaborate persistent commands. In existing systems, these must
be defined manually, usually using a rigid proprietary app.
SAGE’s code writing tool is therefore both easier to use and
more powerful in comparison.

The more an assistant understands a user’s preferences, the
more it can understand the user’s intent and tailor its responses
accordingly. However, existing smart home assistants are lim-
ited in their understanding of their users’ preferences, which
in turn limits the ways they can leverage these preferences
in carrying out their tasks. To address this, we propose the
personalization tool, which is the first LLM memory aug-
mentation approach to be tailored to the smart home context,
allowing SAGE to leverage global information about the user,
as well as finer details relevant to the current context.

The upshot of the integration of these tools within the SAGE
design is a decision making flow controlled entirely by an
LLM but not limited by its inherent shortcomings, enabling
an unprecedented level of flexibility and naturalness in users’
interaction with their smart homes. An example of such a
decision process is illustrated in Figure 1. The key takeaway
of this example is that each step was decided by an LLM,
with no manually defined decision logic whatsoever. Because
no manual decision logic exists, users are not limited to the
use cases envisioned by the developers of such a smart home
assistant. As such, SAGE represents a significant paradigm
shift from existing smart home systems and even more recent
advancements which make use of LLMs (e.g. [2]).

Since SAGE is equipped with a range of functionalities
which are not present in existing smart home systems, we
present a new benchmark to appropriately evaluate their per-
formance.

The benchmark is composed of 50 tasks which gauge
performance based on challenges engendered by the afore-
mentioned limitations of existing smart home systems (see
Section VI). We evaluate SAGE with several LLMs and
compare it to two LLM-enabled baselines in Section VII, and
demonstrate a performance improvement of over 2×.

The main contributions of this paper are:
1) SAGE: Our smart home assistant framework which

integrates diverse tools, of which some are completely
novel, some are adapted and extended from existing
tools, and some are taken off-the-shelf, into a cohesive
and powerful system tailored to smart home use. This
strategy enables SAGE to overcome key limitations of
existing commercial smart home systems, as well as
previously proposed LLM-enabled approaches.

2) Device disambiguation tool: A mechanism for allowing
users to refer to their devices in a natural and non-
rigid way when speaking to their smart assistant, as they
normally would to another human, based on a single
photo of that device in the home.

3) Device interaction tool: A module which leverages the
ability of LLMs to generate structured text to make API
calls for fine-grained control of diverse smart devices.

4) Persistent command handling via code-writing: A
scheme for allowing the system to persistently monitor
device states and execute instructions using code gener-
ated by the LLM.
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5) Personalization tool: A module that combines two
types of user interaction memory to answer questions
about user preferences.

6) Performance benchmark: A benchmark of 50 tasks to
validate SAGE’s performance.

We also validate our findings with a proof-of-concept
demonstration of SAGE in a real-world smart home setting. A
video of this demonstration, as well as the GitHub repository
of the project’s code, and more, can be found on the SAGE
webpage: saic-montreal.github.io/.

II. RELATED WORK

A. Home Automation

A smart home system consists of connected IoT (Inter-
net of Things) smart devices that enable the simultaneous
monitoring, sensing, and control of the home environment.
Automating the control of these devices can lead to im-
provements in quality of life, comfort, and resource usage
[19]. Recent work has aimed to use machine learning to
enhance the capabilities of smart home systems. For example,
[20] proposed to perform home automation based on activity
recognition, developing a deep learning algorithm to recognise
users’ activities from accelerometer data. Another focus is
on voice-based home assistants, where the system is tasked
with understanding users’ voice utterances. For instance, [21]
developed a voice controlled home automation system based
on NLP (Natural Language Processing) and IoT to control
four basic appliances. Leveraging advanced NLP techniques,
current commercial solutions such as Bixby, Google Assistant,
and Alexa offer a user-friendly interface capable of handling a
variety of commands and questions from shopping and setting
reminders to device control and home automation. However,
these modern home assistants usually struggle with implicit
and complex commands [22]. In other words, these systems
tend to fail in situations where a user utterance can not easily
be mapped to a pre-programmed routine.

In an attempt to overcome some of these challenges, re-
cent work proposed to leverage the reasoning capabilities of
LLMs to better understand and carry out user commands. In
particular, Sasha [2] introduced the use of LLMs in smart
home environments and showcased that the LLMs can be
used to produce reasonable behaviors in response to complex
or vague commands. Sasha implements a decision making
pipeline where each step (such as selecting the device to use,
or checking if a routine already exists) is implemented using
an LLM. However, unlike SAGE, the stages of the Sasha
pipeline are manually defined and fixed, limiting its flexibility.
In contrast, SAGE relies on an LLM to decide the sequence
of steps to perform.

Today’s smart home users also have the option of manually
defining IFTTT-style routines, which connect trigger condi-
tions to actions [23], in order to create complex behaviors.
This approach is inconvenient because it must be implemented
by users manually through an app or web interface. It is also
limited by the fact that trigger conditions must be defined by
device manufacturers. Users can also write their own apps to
manage device states, such as with SmartThings SmartApps

[24], but this requires a level of technical sophistication
beyond the ability of most users, as well as a significant time
investment. Web-based services such as IFTTT, Zapier2, and
Home Assistant3 enable the user to create rules to control
their smart devices. The advantage of these services is that
they simplify the process of connecting various services and
smart devices without the need for extensive programming
knowledge. However, these solutions also lack the reasoning
and context-awareness offered by LLMs.

Recently, IFTTT has begun to leverage LLMs through the
creation of a ChatGPT plugin4, which provides a more user-
friendly and accessible interface to interact with the automa-
tion platform. However, this plugin does not allow ChatGPT
to generate new routines, rather only to trigger existing ones.
Similarly, Zapier is aiming to develop an LLM-based product,
which will allow users to create automations based on natural
language prompts, but currently lacks significant reasoning
and sophistication. [2] created an LLM-based pipeline which
outputs trigger-action pairs to create simple IFTTT routines,
but the logical complexity of these routines, as well as the
flexibility of the triggers, is limited. Earlier academic work in-
vestigated training sequence-to-sequence models to synthesize
IFTTT or Zapier routines from natural language descriptions
[25]. Results were promising but limited in that the sequence
models were able to generate the sequence of functions to call,
but not the arguments to those functions.

B. Autonomous Agents

LLM-powered autonomous agents are designed to perform
complex and diverse tasks. Usually, this involves decomposing
the task into multiple stages or subtasks. Several agent archi-
tecture designs have been proposed in the literature [1]. Chain-
of-Thought (CoT) [4] is a well-known prompting technique
that enables the agent to perform complex reasoning through
step-by-step planning and acting. In the CoT implementations,
several CoT demonstrations are inserted in the prompt to
guide the agent’s reasoning process. Alternatively, zero-shot
CoT [26] demonstrated the reasoning capabilities of LLMs
by simply adding the sentence “think step by step” in the
prompt. Another line of work extended CoT by adopting a
tree-like reasoning structure where each intermediate step can
have its own set of sub-steps (e.g. [27]). The aforementioned
work did not consider feedback from the environment (i.e.
the outcomes of actions already taken) in the plan generation
process. Subsequent work did incorporate this feedback. For
example, ReAct agent [5] incorporates observations from the
environment (e.g., outcomes of API calls or tools) received
after taking an action. These observations are taken into con-
sideration in each subsequent reasoning step. Human feedback
can also help the agent adapt and refine its plan by asking for
more details, preferences, etc.

Another important part of the agent design is the use of
external tools for action execution. These enable the agent to
go beyond its internal knowledge. APIs are the most common

2https://zapier.com/
3https://www.home-assistant.io/
4https://ifttt.com/explore/business/ifttt-ai

https://saic-montreal.github.io/
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type of tool, and LLMs (such as Gorilla [28] and ToolLLM
[29]) have been trained specifically for API use. In addition to
APIs, external knowledge bases (e.g. databases of documents)
can be used as a tool to acquire specific information or expert
knowledge [30].

III. SYSTEM OVERVIEW

The structure of SAGE’s sequential decision-making pro-
cess is described in Algorithm 1. Some tools are themselves
implemented as agents, which execute their own sequential
decision making processes. As previously indicated, such
processes are often referred to as “agents” [1]. Therefore, we
refer to tools which are implemented through such a sequence
as “agent-tools”, with a single top-level agent-tool providing
the entry point for user interaction.

Internally, a tool may query a database, control a device,
interact with the user, or even spawn a separate, specialized
autonomous LLM agent to carry out specific types of tasks.

The decision functions di are implemented using an LLM.
The LLM prompt Pi for the decision function di is constructed
as follows:

Pi = Concatenate(TaskInfoi,ToolInstructions(Si),

FormatInfo, a,HistoryInfo(Hi))

where:
• TaskInfoi provides contextual information about the

task to be performed by the meta-tool.
• ToolInstructions(Si) includes instructions on how

to use each tool in the subset Si of tools available to
meta-tool mi.

• FormatInfo specifies instructions on how the output
should be formatted to facilitate parsing.

• a is the input received by the meta-tool.
• HistoryInfo(Hi) compiles the decision history of the

meta-tool into a format that can be understood by the
LLM.

Given the prompt Pi, the LLM is then sampled:

(response, probability)← SampleLLM(Pi)

Here, SampleLLM represents the process of querying the
language model with the generated prompt Pi. The language
model then returns a response along with an associated prob-
ability indicating the confidence of the model in its generated
response. The output generated by the LLM needs to be parsed
into a format suitable for the algorithm:

(action, output)← ParseLLMOutput(response)

ParseLLMOutput is a function that interprets the response
from the LLM into a defined action (either τ or a tuple (s, a)
where s is a tool and a is an argument) and associated output
data that is meaningful within the context of the algorithm. If
the LLM fails to follow the instructions in FormatInfo this
is not possible and an error is thrown.

Algorithm 1 SAGE Decision Process
Require: Set of all tools T = {t1, t2, . . . , tn}.
Require: Subset of agent-tools M = {m0,m1, . . . ,mp} ⊆ T

with m0 as the fixed entry point agent-tool.
Require: Set of decision functions D = {d0, d1, . . . , dp},

where di corresponds to mi.
Require: Subsets Si ⊆ T , the tools available to agent-tool

mi.
Require: Universal set of possible arguments A.
Require: Special terminate action τ indicating an agent-tool

should terminate its process and return its output.
1: Initialize decision history H0 for the entry point agent-

tool’s decision function d0.
2: loop ▷ Infinite loop awaiting user input
3: Await and receive user input userInput ∈ A
4: output← CALLAGENTTOOL(m0, H0, userInput)
5: Respond to the user with output.
6: end loop

7: function CALLAGENTTOOL(mi, Hi, a ∈ A)
8: loop
9: (action, output)← di(Hi, input)

10: if action = τ then
11: Hi ← emptylist
12: return output
13: else
14: Parse action as (s, a∗) where s ∈ Si, a∗ ∈ A
15: if s ∈M then
16: Identify the index j such that s = mj

17: if not Hj initialized then
18: Initialize Hj as an empty list
19: end if
20: o← CALLAGENTTOOL(mj , Hj , a

∗)
21: else
22: o← S(a∗)
23: end if
24: Hi ← Hi + [(s, a, o)]
25: end if
26: end loop
27: end function

Combining these steps the decision function di using an
LLM can be encapsulated as:

di(Hi, input) = ParseLLMOutput(SampleLLM(Pi))

Within this framework, planning (the process of break-
ing down a high-level goal into sub-steps) is implemented
using a technique called “chain-of-thought” [4]. In this ap-
proach, ToolInstructions and FormatInfo encourage
the LLM to output a plan before proceeding to specify exactly
how to execute the steps of the plan. A highly simplified
example is provided in Figure 2. Observe that the multi-step
plan output by the decision function (di) the first time it is
called is persisted via the history (Hi) so the agent-tool can
continue to execute the same plan through multiple LLM calls.
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Prompt:
[TaskInfo]
You are an AI that helps the user turn their
lights on and off. Think step-by-step about
what to do before you execute.

[ToolInstructions]
Tools:

• light ID tool (input: light common name)
• turn on tool (input: light uuid)
• turn off tool (input: light uuid)

[FormatInfo]

Use the following output format

Thought: the steps you need to execute to

handle the request

Action: the next tool to use OR τ

Action input: the argument to the tool OR

final response (if action is τ)

[a]

User input: Turn on the fancy light

[HistoryInfo]

Previous LLM response

Thought: First I need to use the light ID tool

to find the uuid of the fancy light, then I

need to turn it on using the turn on tool.

Action: light ID tool

Action input: fancy light

Previous tool output

Observation: the UUID of "fancy light" is

12e4df...bc4

Response:
Thought: I now know the UUID of fancy light.

Now I need to use the turn on tool to turn it

on.

Action: turn on tool

Action input: 12e4df...bc4

Fig. 2. Simplified LLM prompt construction and response example. Blue
text indicates the prompt, orange text indicates the response, and black text
is the explanation of the section of the prompt below. In this example, the
decision function (di) is being called for the second time, so the history (Hi)
is populated with the results of the first call.

It may also alter the plan in response to unexpected results,
facilitating failure recovery.

In this work, FormatInfo and ParseLLMOutput are taken
from ReAct [5]. The HistoryInfo function is a concatenation
operation. The set of possible arguments, A, is the set of all
strings. TaskInfo, ToolInstructions, the implementations of all
tools in set T , and the assignment of sub-tools to meta-tools
Si comprise the method referred to as SAGE. Implementations
for several critical tools are described in Section IV.

IV. TOOLS

In this section, we introduce a collection of tools developed
for SAGE (see Table I for a comprehensive list). This table
indicates which tools are agent-tools, as well as the sub-tools

Fig. 3. An overview of the personalization tool. Long-term memory remem-
bers and retrieves all past user utterances. The user profile contains more
general trends about the user’s preferences.

for those agent-tools, thereby providing an overview of the
entire tool hierarchy. To help organize these tools for clarity,
we group them into 4 functionality categories: personalization
(accounting for user preferences), device interaction (interact-
ing with smart devices), monitoring (continuous monitoring
of device states to handle persistent commands), and exter-
nal interaction (interaction with APIs external to the smart
home, e.g. email, weather). The rest of this section provides
implementation details for tools in the personalization, device
interaction, and monitoring categories. Details on external
interaction tools are omitted for brevity, as these types of tools
have been well explored in previous work (e.g. in LangChain
[6]).

A. Personalization

This section introduces tools with personalization-related
functionality: the personalization and human interaction tools.
The personalization tool, illustrated in Figure 3, is composed
of two main sub-components: (1) the long-term memory that
stores the history of all past user interactions, and (2) the user
profiler that constructs a hierarchical understanding of user
preferences. We first describe these two components, and then
detail how they are integrated. Finally, we conclude with a
brief description of the human interaction tool.

1) Long-Term Memory: Long-term memory [1], shown on
the bottom-left of Figure 3, stores information about the
user’s past interactions and behavior. The memory records a
history of user commands and feedback. Similar to existing
information retrieval techniques for LLM augmentation [7],
the long-term memory is used to retrieve memories relevant to
the user query in order to augment the in-context information
available to the personalization tool. Each entry in the memory
is encoded using a dense retrieval embedding model [8]. The
vector representations are then indexed and stored in a vector
database. In this work, we use the MiniLM embedding model
[9].
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TABLE I
SAGE TOOL HIERARCHY. EACH ROW CORRESPONDS TO A TOOL IN SAGE AND INDICATES ITS FUNCTIONALITY CATEGORY, NAME, WHETHER IT IS A

TOOL-AGENT, AND WHICH SUB-TOOLS (IF ANY) IT HAS ACCESS TO.

Category Name Agent-Tool Sub-Tools
entry point SAGE yes personalization, device interaction, condition code writing, condition polling, email

and calendar, weather, TV schedule search

personalization personalization no N/A
human interaction no N/A

device interaction

device interaction yes device interaction planner, API documentation retrieval, device attribute retrieval,
device command execution, device disambiguation

device interaction planner no N/A
API documentation retrieval no N/A
device attribute retrieval no N/A
device command execution no N/A
device disambiguation no N/A

monitoring
condition code writing yes device interaction planner, API documentation retrieval, device disambiguation, code

execution
code execution no N/A
condition polling no N/A

external interaction

email and calendar yes get contacts, create a calendar event, list calendar events, create email draft, send an
email message, search email, get an email message, get email thread

get contacts no N/A
create calendar event no N/A
list calendar events no N/A
create email draft no N/A
send email message no N/A
search email no N/A
get email message no N/A
get email thread no N/A
weather no N/A
TV schedule search no N/A

2) User Profiler: The user profile, shown on the bottom-
right of Figure 3, provides a high-level summary of the
interactions between the users and the agent to build a dynamic
and holistic understanding of the users’ preferences. We adopt
a hierarchical approach, first proposed in [10], to build the
users’ profiles. The user profiler starts by grouping all memory
entries by date and generating daily user preference summaries
to capture user preferences at high granularity. Next, the daily
summaries are aggregated into a single global summary serv-
ing as the user profile. Our choice of a hierarchical approach
is motivated by two main reasons: (1) scalability: as the long-
term memory grows with time, a hierarchical approach is
highly scalable because it is amenable to MapReduce-style
processing [11], (2) information loss: directly generating a
concise summary from the long-term memory involves a long-
context prompt. The ability of LLMs to successfully identify
relevant information within the input context is known to
degrade as the length of the input context increases [12].

3) Personalization tool: Leveraging LLMs to create re-
sponses tailored to users’ preferences has been studied in
different fields such as recommendation systems [38] and
personal companion systems [39]. Our work represents, how-
ever, the first endeavor to incorporate personalization in LLM-
based smart home control systems. It is common to augment
an LLM-based agent with memory to store information over
extended periods. One straightforward approach is to append
previous interactions directly into the agent’s prompt to add
more contextual information. However, this approach is ham-
strung by the LLM’s limited ability to handle long contexts.

Building on prior research on memory-augmented LLMs
[40], our work combines two types of memory structures: the

long-term memory and user profile. The user profile and the
retrieved memories are complementary; the retrieval module
identifies a small pool of candidate memories that provide
narrow and precise information, while the user profile presents
a more holistic view of the user. These two memory types
are combined through a distinct prompting strategy. Given the
agent’s query, the most similar memories are retrieved from the
long-term memory using cosine similarity in the embedding
space as the distance metric. These retrieved interactions and
the profile are added to the prompt alongside the agent query
and the user name. The LLM is instructed to understand
and infer user preferences and answer the agent’s query
as faithfully as possible. Multiple users are supported by
maintaining separate profiles and long-term memories. User
identity is recognized using voice recognition software [13].

4) Human interaction tool: The human interaction tool
allows SAGE to ask the user questions, which it usually uses
to clarify intent. The tool is called with a string which is
communicated to the user via a text-to-speech interface. The
tool waits for the user to reply, and transcribes their spoken
answer to text using an off-the-shelf model [14]. Empirically,
we have found that the introduction of the human interaction
tool can cause the agent to become over-cautious, using this
tool over other data sources to reduce uncertainty. We use
prompt engineering in SAGE to encourage it not to over-
use the tool, but how to best trade-off personalization, human
interaction, and risk aversion is a topic of active research.

B. Device Interaction

In this section, we introduce the set of tools that SAGE
uses to interact with smart devices. These tools enable flexible
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device interaction that is scalable, in the sense that new
devices can be integrated into the system with negligible extra
development effort and its capabilities can be leveraged to the
fullest extent without the need for device-specific code. For
example, if a user adds a smart fridge to their smart home
ecosystem, SAGE can integrate the presence of the fridge and
all of its capabilities (e.g. temperature settings, door opening
detection, power consumption, etc.) into its decision making
process without the need for any fridge-specific code to be
written.

Most smart home systems (SmartThings, Home Assistant,
Google Home, Alexa, etc.) provide APIs for interacting with
the smart devices in users’ homes. These APIs are documented
online, and code examples for using them are available, mean-
ing that LLMs trained on web data (such as GPT4) are likely to
have some inherent knowledge of these APIs. In practice, we
have found that LLMs often fail to use these APIs successfully
due to minor errors such as forgetting the exact names of the
attributes they need to retrieve. Furthermore, some devices
have custom functionality for which no documentation is
available online, and can only be retrieved by querying the
device’s API. These challenges can be overcome if details
of API usage are injected into the prompt, but injecting the
full documentation for all connected devices is not feasible,
as doing so would significantly exceed the maximum prompt
length of today’s LLMs.

Motivated by LangChain’s OpenAPI toolkit [15], the device
interaction tool is implemented as an agent-tool (the prefix
“agent-” may be omitted for brevity). This agent-tool generates
a high-level plan using only a general description of devices
and their associated capabilities, retrieves detailed documenta-
tion for the subset of capabilities that are required by the plan,
and then uses these to construct API calls. This behavior is
enabled through a collection of tools detailed below.

1) Device interaction planner tool: : Generates a sequence
of steps that must be performed by the device interaction
agent-tool to complete the given command. The tool is im-
plemented using a single LLM query. This query includes a
list of devices, their capabilities, and short descriptions of what
each capability does. It also includes the input command and
a description of how the plan should be structured. The query
specifies that each step of the generated plan should include
one or more device IDs, one or more capabilities, and a natural
language description of what needs to be done in that step. If
the planner cannot directly infer the correct device from the
information it has been given, it can supply multiple candidate
devices and/or capabilities to the device disambiguation tool
(detailed below) to decide on the correct one. The Device
Disambiguation tool retrieves detailed documentation for each
proposed capability, giving the agent sufficient information to
make a final choice. The use of a planning tool, as opposed
to relying on the chain-of-thought planning (described in
Section III) of the device interaction agent-tool, is motivated
by the fact that this planning process requires a large amount
of information injected into the prompt. Adding all of this
information directly to the device interaction agent-tool prompt
would lead to significantly higher LLM query costs, as the
agent-tool prompt is usually called many times within the

course of a single use of the device interaction tool.
2) API documentation retrieval tool: : Retrieves documen-

tation about a requested device’s capabilities. The documen-
tation is scraped from the web when available, otherwise it is
retrieved from the device using the API. While documentation
extracted from the device API is often lacking detailed natural
language descriptions of usage, it contains the names of
attributes, commands, and command arguments, the meaning
of many of which can be inferred from the name alone. This
tool takes as input a list of capabilities, and returns detailed
documentation for each in JSON format. The JSON format is
used for convenience, since this is the format returned by the
documentation scraper and device APIs.

3) Device attribute retrieval tool and device command
execution tool: : These tools allow the agent to communicate
with the API to read attributes and execute commands. We
implement these tools as wrappers around the SmartThings
REST API to query and modify device states [16]. In order to
use these tools, the documentation retrieval tool must first be
called in order to retrieve the capability details and format the
inputs properly. Note that in the event that the inputs are not
formatted properly and the API throws an exception, we have
found empirically that if the text associated with this exception
is propagated back to the device interaction tool agent, it can
often react and correct the API request accordingly.

4) Device disambiguation tool: : We introduce a novel
method that is capable of aligning a spoken command to
its intended device. While current systems require users to
formulate explicit commands such as “Turn on TV #1”, we
propose a method that allows users to use implicit commands
that do not include a hard-coded name such as “Turn on the
TV over the dresser”. This new capability changes the way
in which humans can interact with their devices by allowing
them to express themselves in a more natural manner, and
without the need to define and remember names for each
device. Our methods build on Contrastive Language-Image
Pre-training (CLIP) [17], a visual-language model (VLM)
architecture which transforms text and visual information into
a common embedding space. This is the first time, to our
knowledge, that this method is used within the smart home
control space.

The device disambiguation tool allows the system to resolve
which devices the user wants to control in scenarios when
there is more than one instance of a given device (e.g. multiple
smart lights). We propose a method that can determine which
device is relevant to the task by leveraging visual context.
By taking a photo of the device within its surroundings
(during initial device setup), we can resolve the device ID
without requiring the user to hard-code a unique device name
(which can easily be forgotten and may not be known to
guests). For example, in Figure 4, it is obvious from the
picture alone that the light is located in the dining room.
The device identity is disambiguated using a VLM, as shown
in Figure 4, where a multimodal VLM (OpenClip ViT-B-32
laion2b s34b b79k, [17]) is used to compute embeddings for
the user’s natural language description of the device and each
of the device images. The device whose image embedding
has maximum cosine similarity to the text embedding of the
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Fig. 4. Device disambiguation. A method to resolve the device that best fits
a natural language device description using VLMs.

device’s description is selected.
5) Comparison with LangChain OpenAPI toolkit: Though

the device interaction agent-tool was inspired by the
LangChain OpenAPI toolkit, SAGE’s device interaction tool
includes several key adaptations to make it appropriate for the
smart home use case. First, the LangChain toolkit assumes a
certain structure to the API, where each unit of functionality is
associated with a separate, well-documented HTTP endpoint.
In the SmartThings API and other smart home control APIs,
each device type exposes significantly different functionality.
As each device type is not assigned its own set of HTTP end-
points, the assumptions of the toolkit break down. Our device
interaction tool is built around the concepts of devices and
capabilities in the API structure, as opposed to HTTP
endpoints.

Second, the LangChain toolkit can only make a sequence
of API calls, while our solution is able to interweave calls to
other tools (such as the device disambiguation tool).

Finally and most importantly, the prompts of the device
interaction planner tool and the device interaction agent-
tool are optimized to the smart home scenario and include
directives that help produce more correct behaviors in common
smart home applications, e.g. making sure that the device is
on before modifying its state, or coming up with schemes
to determine which device the user is talking about. These
schemes do not always rely on the device disambiguation tool,
but may also depend on which device is currently on, the
names of the devices, or other information.

C. Monitoring
This section introduces a set of tools whose functionality

relates to device state monitoring. Many of the more powerful
smart home behaviors are unlocked by the ability to monitor
the state of some devices and react to state changes. These be-
haviors are referred to as persistent commands [2] or routines,
as the system should persistently behave in a desired manner
following a conditional event (e.g. the coffee machine should
turn on whenever the morning alarm rings). Smart home
solutions typically approach this problem using conditional
statements in applications such as IFTTT. Once the condition
is defined, condition checking can be performed using low-cost
computing resources. A drawback of this approach is the lack
of flexibility afforded by the system because IFTTT routines
rely on conditional triggers that must be predefined by the
manufacturer and manually activated by the user.

Highly flexible persistent command handling could be im-
plemented within the SAGE architecture simply by periodi-
cally running SAGE with the persistent command as input.
Each time it is run, the agent could check whether the
command is satisfied and if it is executing the desired behavior.
This approach, which retains all of the capabilities of the agent
architecture and is simple to implement, has the downside
of requiring the agent to constantly be running, incurring
significant computational costs.

Our solution to this conundrum is to exploit the abil-
ity of LLMs to generate high-quality code. This has been
demonstrated using a number of popular benchmarks, such as
HumanEval [41]. Such benchmarks feature a text description
of what the code must accomplish and a test suite which en-
sures that the code behaves as expected. The most commonly
reported statistic is the success rate on the first attempt. Top-
tier LLMs such as GPT4 are currently achieving success rates
of approximately 80% on these benchmarks [42]. Therefore,
in order to increase the system’s flexibility while minimizing
cost, we propose a method by which SAGE can autonomously
program conditional routines by writing Python code which
implements condition-checking logic.

Two tools are introduced to support this functionality: the
condition code-writing tool and the condition polling tool.
The SAGE agent queries the condition code writing tool to
write the necessary code, then registers this code with the
condition polling tool, which runs it periodically (once every
few seconds). Along with the condition checking code, it also
registers a description of the action that must be taken when
the condition is met. Once the code returns “True”, the polling
process triggers a second execution of the SAGE agent with
the command registered with it by the first execution. The
entire approach, and an example thereof, is summarized in
Figure 5.

The implementation of the condition code writing tool is
complicated by the same challenge as the device interaction
tool – the requirement to inject API details into the query
that generates the code. We overcome this challenge in a
similar fashion: by creating an agent-tool which uses the
device interaction planner tool and the API documentation
retrieval tool. However, instead of the device attribute retrieval
and command execution tools (as in the case of the device
interaction tool), the condition code writing tool agent-tool
has access to a code execution tool which allows it to test its
code. This tool also stores the code it has run in memory, so
that it can be referred to by the name of the function. Similarly
to the device attribute retrieval and command execution tools,
the code execution tool handles exceptions by returning their
messages to the code writing agent-tool, facilitating recovery
from faulty code.

V. EXECUTION EXAMPLE

Figure 1 visualizes an execution trace of SAGE agent-tool
handling a single command, illustrating the sequence of tools
that are called to complete the task. After checking long-term
user interaction memory and user profile information with
the personalization tool, the system doesn’t find any relevant
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Fig. 5. A summary of the persistent command handling mechanism. 1: After
receiving the user request, the SAGE agent-tool extracts the condition (“Is
the TV off?”) and uses the condition code writing tool to write code to check
this condition. The tool registers this code in memory and responds with
the name of the function (is tv off). 2: The SAGE agent-tool registers the
function is tv off with the condition polling tool, along with the command
reflecting the action to take once the condition is detected “Turn the lights
on”. At this point, the SAGE agent-tool finishes executing. The condition
polling tool periodically runs the is tv off function. Once the function outputs
True, the condition polling tool triggers the SAGE agent-tool again with the
registered action “Turn the lights on.” Note that the agent-tool will only be
triggered when the status of the action transitions from False to True to avoid
re-running the agent-tool the entire time the TV is off. 3: The agent-tool
begins executing with the command “Turn the lights on” and turns on the
lights using the device interaction tool.

information and so must call the human interaction tool to
directly ask the user about their sports preferences. The SAGE
agent-tool then finds the relevant TV program and channel
using the TV schedule search tool. Once the user’s concrete
goal is established (to change the TV to a particular channel),
SAGE calls the device interaction tool, an agent-tool. The
device interaction tool starts by calling the device interaction
planner tool to establish the sequence of steps that must be
performed. The plan it generates is as follows: First, the device
disambiguation tool is called to determine which TV the user
is referring to. Second, the device command execution tool
turns the TV on. Finally, the device command execution tool
is used again to change the channel. The device interaction
tool successfully executes this plan, then returns execution to
the top level SAGE agent-tool, which responds to the user and
terminates the run.

VI. EVALUATION

Since SAGE is equipped with a range of functionalities
which are not present in existing smart home systems, we
present a new benchmark to appropriately evaluate their per-
formance. The benchmark is composed of 50 tasks which
gauge performance based on technical challenges engendered
by the previously discussed limitations of existing smart home
systems.

These test cases are implemented by initializing device
states and memories, running the SAGE with an input com-
mand, and then evaluating whether the device state was mod-
ified appropriately. For tasks that involve answering a user’s

questions (as opposed to modifying device states), the tests
are designed such that to answer the question the agent must
retrieve a specific piece of information (which it is unlikely to
be able to guess). Table VI lists a selection of such tasks used
in the evaluation. An LLM-based evaluator is then used to
check whether the answer contains the expected information.
The results of all tests are binary (pass/fail).

The smart device configuration (device types, IDs, etc) was
created by configuring a home with real SmartThings devices,
then saving the state of these devices. The devices included:
2 televisions, 1 refrigerator, 1 dishwasher, and 4 lights. The
initial states of the devices are modified by the initialization
routine of each task. Photographs of the real devices in their
real locations are used in the device disambiguation tool.

We classify the test cases according to five types of technical
challenges which are difficult for existing systems. Most tests
in the set belong to one or more of these categories. The
categories are:

1) Personalization: Integrating knowledge of user prefer-
ence to interpret the request correctly.

2) Intent resolution: Understanding vague commands and
drawing logical conclusions.

3) Device resolution: Identifying the desired device ID
based on natural language description.

4) Persistence: Handling commands that require persistent
monitoring of system states.

5) Command chaining: Parsing a complex command that
consists of multiple instructions, breaking it into action-
able steps and executing each step in a coherent manner.

We also include a sixth category, Direct command, to
indicate test cases that are simpler to execute in that they
do not feature any of the 5 challenges listed above. These
are more comparable to the tasks used to evaluate previous
methods such as [43].

The test cases are designed to be run in a completely
automated fashion. For this reason, we disable the human
interaction tool during testing. We test SAGE with 5 differ-
ent LLMs: GPT4, GPT4-turbo, GPT3.5-turbo (ChatGPT) 5,
Lemur [18], and Claude2.16. These are chosen to represent
different points along the performance (and consequently cost)
spectrum. GPT4 was the most powerful LLM available at
the time SAGE was developed. All prompts in SAGE are
optimized specifically for GPT4. GPT4-turbo was released
during the evaluation phases of SAGE, and we include it
as a less costly alternative. GPT3.5-turbo costs an order of
magnitude less than GPT4. Claude2.1 was included as the
most competitive commercially available non-OpenAI LLM
at the time (note that since the evaluation of SAGE was
completed, Claude37 and Gemini8 have been released and are
reportedly competitive with GPT4). Finally, Lemur is included
to represent the best open source LLMs, having been tuned
specifically for autonomous agent type tasks.

5https://platform.openai.com/docs/models
6https://www.anthropic.com/index/claude-2-1
7https://www.anthropic.com/news/claude-3-family
8https://deepmind.google/technologies/gemini/#introduction



10

TABLE II
AN ILLUSTRATIVE SUBSET OF THE 50 TASKS USED FOR EVALUATION. WE CLASSIFY THE TEST CASES ACCORDING TO FIVE TYPES OF TECHNICAL
CHALLENGES WHICH ARE DIFFICULT FOR EXISTING SYSTEMS: PERSONALIZATION (PR), PERSISTENCE (PT), DEVICE RESOLUTION (DR), INTENT
RESOLUTION (IR), AND COMMAND CHAINING (CC). “SERVICE CATEGORY” DRAWS A PARALLEL BETWEEN TASKS AND POPULAR IFTTT RECIPE

CATEGORIES. THE FULL LIST CAN BE FOUND ON THE SAGE CODE REPOSITORY: GITHUB.COM/SAIC-MONTREAL/SAGE.

User command Challenge category Service CategoryPR PT DR IR CC
It is too bright in the dining room. ✓ ✓ Lighting
Turn on the light by the bed. ✓ Lighting
Set up a Christmassy mood by the fireplace. ✓ ✓ Lighting
I am getting a call, adjust the volume of the TV. ✓ ✓ Television
Put the game on the TV by the credenza and dim the lights by the TV. ✓ ✓ ✓ ✓ Television, Lighting
I am going to sleep. Change the bedroom light accordingly. ✓ ✓ ✓ Lighting
Dishes are too greasy, set an appropriate mode in the dishwasher. ✓ Appliances
Put something informative on the TV by the plant. ✓ ✓ ✓ Television
Change the lights of the house to represent my favorite hockey team. Use the
lights by the TV, the dining room and the fireplace.

✓ ✓ ✓ ✓ Lighting

Create a new event in my calendar - build a spaceship tomorrow at 4pm. ✓ Internet
Turn on the light in the dining room when I open the fridge. ✓ Lighting, Appliances
Turn on light by the nightstand when the dishwasher is done. ✓ ✓ Lighting

For all LLMs, we set the temperature parameter to 0. For
each LLM, we run each test case 3 separate times, since LLM
performance is somewhat stochastic, even with 0 temperature.

In addition to the main set of 50 tasks, we also created
a set of 10 extra “test set” tasks after the development of
SAGE was complete. The aim of these tasks was to verify
that the prompts had not been over-engineered for the task
set. The author who developed these tasks was familiar with
the SAGE architecture, but was not involved in the final
prompt engineering stages. These test set tasks evaluate the
performance on the same five categories of challenges as the
main set.

To provide more insights on the key challenges faced by
each LLM, we manually annotated the failures that con-
sistently occurred across all three runs. The failures were
categorized based on the nomenclature defined in Table III.
Since the success of a given test case is contingent upon
multiple steps of decision-making, failures can occur in more
than one step in the LLM’s line of reasoning. For our analysis,
the classification of a failure of a given test case is based on
the first mistake in the execution.

We contextualize the failure categories by grouping them
into tiers. These tiers are organized such that, most of the
time, a failure in tier n implies success in tiers 1 through
n − 1. For example, if an annotator marked a test case as
failing due to a failure in planning (tier 2 failure), this implies
that it succeeded at command understanding and formatting
(tier 1 failures).

A. Baselines

To contextualize SAGE’s performance, we compare our
method to two LLM-based smart home automation baselines
on our test tasks. The first method, called “One Prompt”,
involves creating a single prompt comprised of the user
command as well as the states of all devices, and asking the
LLM to generate updated states in response. The full device
state, serialized to JSON format, exceeds GPT4’s token limit
(8000 tokens), so we manually selected the parts of the device
state involved in the tests. In addition, the model was asked

to output the changes that need to be made, not the full new
state.

The second baseline, called “Sasha,” implements the
pipeline described in [2], with some modifications. The orig-
inal pipeline in [2] consists of 5 pipeline states – clarifying,
filtering, planning, feedback, and execution. The clarifying and
feedback stages required human intervention, and were thus
not compatible with our fully automated testing framework,
so they were removed in our implementation. Additionally,
this pipeline distinguishes between “sensors” and actionable
devices, allowing the pipeline to output sensor-based trigger-
action pairs to handle persistent commands. This requires the
manual definition of triggers, which our testing framework
does not support, since SAGE is able to generate its own
triggers by writing code. As such, our implementation of Sasha
does not include the trigger concept, and is therefore unable
to handle persistent commands.

Both of these baselines are at a disadvantage in that they are
not able to integrate all of the different sources of information
that SAGE uses (e.g. user preferences, photos of the devices,
etc.). Despite this, the baselines allow the reader to gauge the
difficulty of the task set, and to appreciate the extent to which
integrating information from a variety of sources can improve
the performance of smart home automation systems. We do
not provide a baseline with access to the same information as
SAGE because, to our knowledge, there is no previous work
that is capable of integrating all of these information sources.

VII. RESULTS

In this section we present results for the competing LLMs
and methods discussed in Section VI. We also provide a
discussion of potential reasons for performance differences.

Overall success rates for the three methods, SAGE, Sasha,
and One Prompt on the 50 task set are presented in Fig-
ure 6. SAGE achieves an overall success rate of 76% with
GPT4, far beyond either of the baselines, demonstrating that
it is indeed capable of integrating a variety of information
sources through the use of its tools. Unsurprisingly, GPT4

https://github.com/SAIC-MONTREAL/SAGE
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TABLE III
DESCRIPTION OF THE FAILURE CATEGORIES. THE FAILURE TIERS COLUMN HELPS CONTEXTUALIZE THE FAILURE TYPE CATEGORY. IN MOST CASES, A

FAILURE ON TIER N IMPLIES THAT FAILURES IN LOWER TIERS WERE AVOIDED (4 = HIGHEST, 1 = LOWEST).

Failure Tier Failure Type Description

1 Formatting Agent fails to follow the template required by ToolInstructions.
Command understanding Agent fails to understand what the user is asking.

2 Planning Agent’s plan is incorrect or missing steps.

3

Plan execution Agent proposes a correct plan but the execution is missing steps.
Tool selection Agent chooses the wrong tool at a given stage of the execution.
Tool population Agent provides incorrect arguments to the tool.
API request Agent makes incorrect SmartThings API request (wrong attribute, command, or component).
Code writing Agent’s generated code does not work properly.

4
Faulty tool Non-agent failure (usually a failure of the VLM in the device disambiguation tool).
LLM limitation LLM lacking key common knowledge or context length.
Hallucination Agent invents concepts (e.g. devices, components, user requirements) that do not exist.

NA Other All other failures.

Fig. 6. Overall success rates on 50 challenging tasks. SAGE leverages a
collection of tools that allow it to integrate a large amount of information
into its decision making process, allowing it to outperform other LLM-based
methods by a significant margin. Designed primarily for use with GPT4, it
outperforms other methods with a variety of LLMs, including open source
models such as Lemur. Error bars indicate max and min scores over the three
runs.

achieves the highest performance of all LLMs regardless of
method. This is largely because it is the most powerful, but
also because the prompts were optimized for it. GPT4-turbo
appears to be significantly worse than GPT4 on the 50 task
set, though it is purported to have similar performance. There
are several potential explanations for this phenomenon. First,
the details of this model have not been publicly released, but
based on the fact that it is several times less expensive to
run, we can guess that it has fewer parameters than GPT4.
Second, our experience has been that GPT4-turbo is more
conversational than GPT4, making it less likely to follow
instructions, and therefore worse at agent-style tasks. Finally,
the SAGE prompts are optimized for GPT4. It is likely that
if we invested equal effort in optimizing them for GPT4-

Fig. 7. Overall success rates on a “test set” of 10 extra tasks. These tasks were
not seen by the SAGE’s designers during the iteration process, and serve to
validate that the prompts used in SAGE are not over-engineered to a particular
task set. Error bars indicate max and min scores over the three runs.

turbo, its performance would increase significantly. On the
10-task “test set” illustrated in Figure 7, the two models
attain approximately equal performance. However, given the
small size of this set, it may be less accurate in resolving
performance differences than the primary set.

Another interesting observation from Figure 6 is that
Claude2.1 performs very poorly with SAGE, even compared to
both baselines. This can primarily be attributed to Claude2.1’s
inability to follow formatting instructions and poor tool selec-
tion abilities, as illustrated by Table IV, which presents the
results of the manual failure analysis. In order to successfully
function as the backbone of an agent, an LLM must be
capable of following instructions related to formatting and
tool selection, as an agent must be capable of converting
natural language reasoning into concrete real-world actions.
Claude2.1 does not seem to have significant reasoning issues
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TABLE IV
RESULTS OF MANUAL FAILURE ANALYSIS. THIS ANALYSIS CATEGORIZES FAILURES INTO ONE OF 12 FAILURE TYPES. THE FAILURE TIERS COLUMN
HELPS TO CONTEXTUALIZE THE FAILURE TYPE CATEGORY. IN MOST CASES, A FAILURE IN TIER N IMPLIES THAT FAILURES IN LOWER TIERS WERE

AVOIDED (4 = HIGHEST, 1 = LOWEST). ONLY TEST CASES THAT FAILED CONSISTENTLY ACROSS ALL THREE RUNS WERE ANALYZED.

Failure Tier Failure Type GPT4 GPT4 Turbo GPT-3.5 Turbo Lemur Claude2.1
Total Failures = # failures per run ×3

9 51 96 111 141
Failure rate (%)

1 Formatting 0 0 12 0 35
Command understanding 67 14 2 0 1

2 Planning 0 6 32 43 0

3

Plan execution 0 2 5 10 2
Tool selection 0 4 8 3 37
Tool population 0 18 27 24 15
API request formatting 33 51 0 0 1
Code writing 0 6 6 0 0

4
Faulty tool 0 0 5 12 0
LLM limitation 0 0 1 7 0
Hallucination 0 0 0 0 2

NA Other 0 0 0 1 7

Fig. 8. SAGE success rates for each category of challenging tasks on the 50
task set. Note the inner ring of the chart indicates zero success rate, not the
center.

(as evidenced by a lack of failure in the planning stages), but
its lack of ability to perform this basic functionality makes it
a poor candidate for SAGE and other agent architectures.

Parity of GPT3.5-turbo and Lemur is an encouraging result
for those interested in the use of open source LLMs for agent
applications.

Examination of Figure 8, which presents SAGE success
rates for each category of challenging tasks, reveals that
SAGE with GPT4-turbo maintains fairly consistent perfor-
mance across challenge categories. On the other hand, lesser
LLMs tend to perform better on direct commands than more
challenging tasks. This confirms that the categories we have
identified do indeed present significant difficulties for smart
home automation systems.

A. Failure analysis

Table IV summarizes the results of the manual failure
analysis. In this section, we review each of the LLMs and

provide some discussion about the primary reasons they fail.
Out of GPT4’s 9 failures that were analyzed, 6 are due

to misunderstandings of the user command. These commands
are somewhat vague, and the LLM was not able to apply the
common sense expected by the test design. The other 3 failures
were due to the LLM using the wrong device component (in
the SmartThings API some devices have multiple “compo-
nents”, e.g. one for the freezer part and one for the refrigerator
part of a smart fridge).

GPT4-turbo performance is hindered by tool usage issues,
which account for 69% of the failures (API request formatting
and tool population). Indeed, GPT4-turbo most often fails due
to problems formulating a request that respects the Smart-
Things API. This includes providing the right argument types,
components, and capabilities.

GPT3.5-turbo predominantly fails to generate proper plans
and struggles with passing the right parameters to tools. It also
usually fails to use the state of the available devices to inform
its decision making process. It also often fails to correctly
interpret the user’s request, which tends to require significant
common-sense reasoning abilities.

Lemur struggles to correctly interpret the user command,
given the context of the current device state, and thus also
struggles to generate good plans. The plans generated by
Lemur are missing vital steps like using device disambiguation
to find the right tool or recognizing the need to create a trigger
for a persistent command. It also utilizes multiple rounds of
trial and error to find the right API calls for device control.

Claude2.1 often struggles to follow the expected format of
the response. This involves outputting a thought followed by
an action based on previous observations. Although we provide
verbose error log and debugging hints to the agent, Claude2.1
fails to recover from its mistakes. Another common failure
type for Claude is tool selection. For example, Claude2.1 often
uses the personalization tool for direct commands - where it is
not needed - instead of the device interaction tool. Note that
tool use is a new feature recently added to Claude and is still
under development.

Many of these failure modes are instances of the LLM
failing to respect the instructions provided within the prompt.



13

Weaker LLMs tend to fail to attain the bare minimum criterion
of correctly formatting their responses, and as such their
contents cannot be used. Stronger LLMs can usually respect
the response format, but often fail to attend to the details
of response content. One commonly occurring example of
such behavior is using the incorrect parameter name (API re-
quest formatting). The parameter names that are actually used
by the LLM may be similar (e.g. temperature measurement
rather than temperatureMeasurement). This example reveals
the limitations of in-context learning (the capacity to modify
the behavior of an LLM by modifying its context but not its
weights), and highlights the way it breaks down. Specifically,
as the context becomes longer, the model ceases to attend as
carefully to any particular directive in the context. Attempting
to tackle highly complex tasks such as smart home control
using LLM agents tends to lead to long, complex prompts
which push the boundaries of in-context learning.

As such, managing prompt length is a key challenge that
drove the SAGE design. SAGE’s hierarchy is critical here –
it allows for the distribution of functionality among a set of
different agent-tools, such that the knowledge (and therefore
prompt length) required by each is reduced. Another critical
factor in design is the adaptation of the tool interfaces to align
with the LLMs preferences. As discussed above, a common
failure mode is for the LLM to attempt tool usage in a way
which seems reasonable, but which is not actually correct.
As a simple example, an LLM using a tool which takes
two numbers as inputs and outputs their quotient may invent
another argument which controls how rounding is handled.
In some cases, it is easier to overcome this by adapting
tools to conform to the LLMs’ preferred usage. This type of
optimization – making sure the prompts are only as long as the
LLM can handle and adapting the structure of the hierarchy to
be well aligned with the LLM’s expectations, gives the LLM
that was used for development of the system (in this case
GPT4) a big performance advantage. We expect that if the
system was optimized for one of the other LLMs, it would
likely see a significant performance boost, albeit unlikely that
it would be able to perform as well as GPT4 in the same
scenario.

VIII. CONCLUSION

This article introduced SAGE, an LLM agent framework
targeted at smart home applications. SAGE orchestrates the
use of tools in a sequential decision making process. SAGE
integrates a collection of novel tools designed to address
key challenges in smart home automation including difficulty
interpreting unconstrained natural language of user commands,
limitations in interaction with the environment and external
data sources, and lack of knowledge of the user’s habits and
preferences. We also created a dataset of challenging smart
home automation test cases which tested the system’s ability
to be personalized, to resolve user intent from unstructured
queries, to resolve devices referred to in natural ways (e.g.
“the TV over the dresser”), and to appropriately handle
command persistence and chaining. These challenges are very
difficult for today’s smart home automation systems, but reflect

the sophistication smart home users will demand of next-
generation systems.

SAGE achieved a success rate of 76% on these tasks. This
value, while imperfect, is 2.5× better than the next-best LLM
baseline, let alone existing commercial smart home assistant
systems. Each success required the successful sequential use
of many tools, meaning that in fact the number of successful
tool uses is much larger than the number of failed ones. To
understand the underlying causes of failures, we manually
analyzed and categorized each one. This analysis revealed
that there are many ways that such a complex decision-
making process can go wrong, and that today’s most powerful
LLMs are needed in order to achieve acceptable performance.
However, the respectable performance attained by Lemur, an
open-source model fine-tuned for agent tasks, is encouraging.
We expect that in one or two years the performance of SAGE
with an open source LLM will be comparable to that of GPT4
today, at a fraction of the cost.

As such, SAGE represents a promising first step towards
the creation of truly flexible smart home automation systems
that users can interact with as naturally as they would with a
close friend.
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